

Range Enhancement to Wide Area Multilateration Processing

J. Beyer

ICNS 2005

Fairfax, VA

Sensis Corporation

5793 Widewaters Parkway DeWitt, New York 13214

Tel: 315-445-0550 Fax: 315-445-9401

Presentation Goals

Demonstrate the range enhancement to multilateration processing significantly extends the range and receiver siting flexibility of wide area multilateration systems

Presentation Topics

- → Limitation of current multilateration processing
- → Range enhancement to multilateration processing
- → Benefits of the range enhancement
- → Performance results of a developmental system with the range enhancement

Current Processing Techniques

- → Constellation of sensors receive a single aircraft transmission at multiple points in space
- →TDOA used to determine a very accurate position estimates
 - -Eliminates transponder turn around errors
- →GDOP is the predicted accuracy of a multilateration system at any point in space

Mathematical Limitations

- →GDOP is relatively small and constant inside a constellation of receivers
- →GDOP increases rapidly outside a constellation of receivers
- → Target localization impractical a short distance outside boundary of receivers

System Limitations

- → Surveillance over a wide area requires a broad deployment of receivers
- → Distributed receivers present logistical issues:
 - -Site access
 - -Communications
 - -Security
- → Desirable to provide high quality multilateration surveillance while minimizing distribution of receivers

Range Enhancement

- → Multilateration systems use interrogations for:
 - ATCRBS tracking
 - Mode A code
 - Mode C altitude
- → Range from interrogator can be measured for each interrogation/reply transaction
 - Compensating for transponder turn around time delay
- → Comparable to current SSR surveillance
- → Significantly improves GDOP outside the boundary of receivers

GDOP Comparison

Benefits of Multilateration w/ Range

- → Juneau (Alaska) International Airport terminal area is dominated by mountainous terrain
- → Multiple rotating radars needed to provide surveillance
 - -Terrain limited
- → Distributed solution like multilateration is the ideal solution
 - -Flexible siting

Juneau Terminal Airspace

Juneau Multilateration Siting

- → Limited siting options
 - Terrain
 - Communications
 - Power
- Ideal receiver locations surround coverage area
- → System configuration
 - 5 receivers
 - 2 receiver/transmitters

Traditional Multilateration Simulation

- → Poor surveillance over large potion of coverage area
 - Poor GDOP

Range-Aided Multilateration Simulation

- →Good surveillance over entire coverage area
 - Accuracy
 - Probability of detection

Detect the Difference

Developmental System

→ System deployed around Sensis Corporation

- Range enhancement
- -4 Receivers
- -1 500 W Tx/Rx
- -60 nmi range
- -50 int/s max
- -GPS timesync

Mode S Flight Test

- → Volpe Transportation Center Test Aircraft
 - Differentially corrected GPS truth source
 - -8800 ft AGL
 - Belly mounted transponder
- → Test aircraft acquired 40 nmi from Sensis Corp
 - −5 second acquisition time
 - Altitude line of site

- →3 small gaps when target banks
 - -No receiver detection

Flight Test Profile

Flight Test Results

- →200 ft RMS absolute error
 - -95% of positions ≤ 328 ft
 - 99.9% of positions <= 984
 ft</pre>
- → 0.93 probability of update in 5 second interval
- →Increased error at 30 -35 nmi due to poor detection during turn

Processing Technique Comparison

Applications

- → Comparable to terminal and en-route surveillance
 - Accuracy
 - Update rate
- →Increased update rate applications require additional interrogations or distributed receiver architecture
 - -Precision Runway Monitor

Conclusions

- → Range enhancement significantly increases siting flexibility
 - Reduced receiver distribution
 - Efficiently utilize existing infrastructure
- → Range enhancement significantly improves target localization outside a constellation of receivers
- → Surveillance performance comparable to current SSR technology

Sensis CORPORATION

Detect the Difference